Skip to main content

 BS:1

Hidden Markov Models (HMMs): HMMs are statistical models where the system being modeled is assumed to be a Markov process with hidden states. The "hidden" aspect comes from our inability to directly observe the states. Instead, we have access to a set of observable variables that provide some information about the hidden states.
In our case, the observable variables are sound data, and the hidden states represent the underlying process (like phonemes in speech) that generated these sounds.
Here's a breakdown of what I did:
1️⃣ I created random 'sound' data sequences, intended to mimic the variations we encounter in actual speech patterns. This is the kind of data we need when working with Hidden Markov Models in a speech recognition context.
2️⃣ I employed the hmmlearn Python library to train a Gaussian Hidden Markov Model on this sound data. The aim here is to uncover the 'hidden' states that generate the observed sound data - a crucial step in any HMM-based application.
3️⃣ Once the model was trained, it was time for prediction! Using the trained model, I predicted the sequence of 'states' for a new piece of sound data. This mirrors the process of recognizing phonemes in a speech signal, a key step in speech recognition systems.
To make the outcomes more tangible, I employed Matplotlib to visualize the original sound data and the predicted sequence of states. This exercise helped in understanding and demonstrating the application of HMMs

Github: https://lnkd.in/dVkGf69Y

Comments

Popular posts from this blog

How to convert daily streamflow data into monthly, yearly streamflow data Using python

Hydrological Data Analysis: 001 Hydrological data analysis often involves working with time series data. In hydrology, streamflow is a critical parameter that is monitored and analyzed regularly. Streamflow data is usually recorded daily, but for many applications, it is useful to have the data aggregated into monthly or yearly values. In this blog post, we will explore how to convert daily streamflow data into monthly and yearly values using Python. Importing the Required Libraries Before we start working on the data, we need to import the necessary libraries. We will be using the Pandas library for data manipulation and the Matplotlib library for visualization. We can import these libraries using the following code Loading the Data The first step is to load the daily streamflow data into a Pandas data frame. We assume that the data is stored in a CSV file named "streamflow_data.csv" and that the data has two columns: "Date" and "Streamflow". We can use t...

VBA Code for Calculating Nash-Sutcliffe Efficiency

The Nash-Sutcliffe Efficiency (NSE) is a statistical measure widely used in hydrology to evaluate the predictive performance of models. It is a dimensionless value that ranges from negative infinity to 1, with values closer to 1 indicating better model performance. The VBA code provided above calculates the NSE using two input ranges, one for observed values and the other for simulated values. The function first calculates the mean of the observed values and then uses it to compute the numerator and denominator of the NSE formula. The numerator sums the squared differences between the observed and simulated values, while the denominator sums the squared differences between the observed values and their mean. The function then subtracts the quotient of the numerator and denominator from 1 to obtain the NSE value. This VBA code can be used to calculate the NSE for a wide range of hydrological models in Microsoft Excel. It is a useful tool for model calibration and validation, as it allow...